
Controlled Chaos: Randomization in Level Design

An introduction to integrating randomness in games using the example of Qake.

Hans-Peter Dietz
hp@jandh.org | http://hp.jandh.org

Keywords: Randomization, Level Design, Game Mapping, Game Design, Difficulty Progression,
Balancing

Copyright c© 2015 J&H | http://jandh.org

mailto:hp@jandh.org
http://hp.jandh.org
http://jandh.org

From the first conception of our arcade game QAKE, it was clear to us that we wanted some
sort of randomness somewhere within the game. We considered many different approaches, but
sometime down the road we decided that this somewhere was going to be the levels themselves.

Why would want that? Replayability! - Randomness is a great addition because it enables
replayability. If the levels of the game feature random factors, every gaming session can be unique
and offer a new, exciting challange to the player. Furthermore, it bears the potential to make players
feel lucky. Think of roll-playing-games like DIABLO III R©[2], where loot drops randomly. If this
wasn’t the case but drops would be static, the game would loose a lot of appeal.

Figure 1: ”I guarantee it.” by Sherlock Horse on 9gag.com [4]

In the spirit of this 9gag post (see figure 1), we established that our game was going to be
like those good old classics - but with a twist: There should be no hard finish line (in terms of a
final level) for the game, but an infinite amount of ever-changing levels. To narrow things down,
we established that we wanted randomized enemy configurations for each level, while maintaining
comparable difficulty levels.

With this decision the question of ”how does one design and implement randomness in levels?”
arose. To answer this question many factors need to be considered - one of which is progression
of difficulty. When you decide how the difficulty will progress within your game, you start off
by establishing relevant factors. Maybe your game contains enemies that can be eliminated and
therefore have a certain amount of hit points. These hit points then become a factor of difficulty,
i.e. an enemy presumably is harder to kill if it has more hit points. Maybe your game is time-based
and the player has to finish a certain task within a given timeframe. This timeframe then becomes
a factor of difficulty, i.e. a shorter timeframe makes it harder for the player to succeed.

http://qake.jandh.org
http://9gag.com/gag/a8b5GEY

(a) Linear increase of hit points per level (b) Exponential development of hit points per level

Figure 2: Difficulty development example: Hit points

Most major games incorporate several of these factors, often interrelated with each other, forming
complex level systems.

Concerning QAKE, we established that there would be three major difficulty factors:

1. The number and type of enemy balls.

2. The speed of enemy balls.

3. The rate at which bombs and power ups spawn.

As a basic first approach you can start out by developing these factors by simple, linear incre-
mentation (see figure 2a).
More sophisticated and more commonly employed are exponential developments (see figure 2b),
where factors change slowly in the beginning and increments get bigger with later levels.

Usually not all factors are treated equally but develop at different gradients. In QAKE, for ex-
ample, ball movement speed increases linearly while the number of balls progresses exponentially.

On a side note: An easy way to determine suitable functions for your factors is to use
tools like GRAPHER (built-in OSX tool) or GRETL[1]. Just enter a function based on an
educated guess and tailor it to your needs until you are satisfied.

http://qake.jandh.org
http://qake.jandh.org
http://gretl.sourceforge.net

(a) Wobble-Ball (b) Stop&Go-Ball

Figure 3: Different enemy balls in QAKE

Returning to our random component, we so far have laid down that we wanted the number of
balls to increase exponentially but configurations to be random.
Since, however, different ball types also bear different difficulty levels, i.e. a Wobble-Ball (see
figure 3a) in QAKE is arguably a harder enemy than e.g. a Stop&Go-Ball (see figure 3b), we have
a complex interrelation, which has to be taken into account when deciding which balls are going to
live in each level.

Our approach to solve this problem incorporates a concept that might be familiar from real
time strategy games like STARCRAFT R©[?]: Supply. The concept is rather simple and can
easily be explained by a real-world metaphor: Entities need to eat, drink, etc. in order to live. In
other words: they require supplies. If you do not have the required supplies to spare, you cannot
entertain the unit. Simple as that.
Different entities, in our case ball types, are therefore associated with different quantities of re-
quired supply they eat up in order to live in the game.
A basic SPACEMARINE from Starcraft for example requires one supply, while a TANK - a massive

http://qake.jandh.org
http://qake.jandh.org

siege unit - requires three (see figure 4).

Figure 4: Excerpt from the Starcraft 2 R©Game Guide [3]

Extracting this concept and adapting it to our game allows us to incorporate randomness into
our difficulty progression: Instead of increasing the number of balls per level directly, we in-
crease the supply available for balls, which is then allocated by choosing pseudo-randomly until
exhausted.
A basic implementation might be nothing more than a few lines of code (see listing 1).

Listing 1: Example: Compiling random enemy types from three tiers based on supply
/ / r e t r i e v e s u p p l y based on some f u n c t i o n
s u p p l y = g e t S u p p l y F o r L e v e l (c u r r e n t L e v e l) ;
enemies = [] ;

whi le (s u p p l y > 0) {
/ / r e t r i e v e a random enemy based on s u p p l y l e f t
i f (s u p p l y > 2) {

i = r a n d I n t (1 , 3) ;
} e l s e i f (s u p p l y > 1) {

i = r a n d I n t (1 , 2) ;
} e l s e {

i = 1 ;
}
sw i t ch (i) {

case 1 :
enemies . add (new EnemyTier1 ()) ;
break ;

case 2 :
enemies . add (new EnemyTier2 ()) ;
break ;

case 3 :
enemies . add (new EnemyTier3 ()) ;
break ;

}
s u p p l y −= i ;

}

On a side note: A good way to acquire random numbers in Objective-C (or any C-dialect)
is to use the arc4random() functions. See listing 2 for a few utility functions you are free
to use in your projects.

With such a randomized population algorithm it is possible to achieve a lot of different configu-
rations even with only a few different enemy types. Some basic statistics help us out in determining
how many are possible:
Given our three enemy tiers (Tier1 , Tier2 and Tier3 with respective supply-requirements of 1,
2 and 3) and a supply cap of 6, possible configurations are:

1.

2.

3.

4.

5.

6.

7.

If we further increase the available supply, the number of possible configurations increases
exponentially.
Try listing all possible configurations with a supply cap of 9 for example and you will see that
possibilities become vast very fast. To see the result in action have a look at figure 5 where you can
see three different variations of QAKE’s level 33. Though the configurations differ significantly
our approach allows us to maintain comparable difficulty levels, facilitating great replayability and
a unique experience at every gaming session.

We hope you enjoyed this article and that it comes in handy to those of you who want to
integrate some randomness into their games!

http://qake.jandh.org

Figure 5: Different ball configurations of level 33 in QAKE

Listing 2: Random number generation functions in Objective-C
+(f l o a t) randomFloa tBe tween : (f l o a t) min and : (f l o a t) max {

f l o a t d i f f = max − min ;
re turn (((f l o a t) (a rc4random () % ((unsigned)RAND MAX + 1)) /

RAND MAX) ∗ d i f f) + min ;
}

+(i n t) randomIntBetween : (i n t) min and : (i n t) max {
re turn (i n t) (min + a r c 4 r a n d o m u n i f o r m (max + 1 − min)) ;

}

+(NSUInteger) randomNSUIntegerBetween : (NSUInteger) min and : (NSUInteger)
max{
re turn (NSUInteger) (min + a r c 4 r a n d o m u n i f o r m ((unsigned i n t) max + 1
− (unsigned i n t) min)) ;

}

+(CGFloat) randomCGFloatBetween : (CGFloat) min and : (CGFloat) max{
CGFloat d i f f = max − min ;
re turn (((CGFloat) (a rc4random () % ((unsigned)RAND MAX + 1)) /

RAND MAX) ∗ d i f f) + min ;
}

http://qake.jandh.org

References

[1] ALLIN COTTRELL, RICCARDO LUCCHETTI. Gnu Regression, Econometrics and Time-series
Library. http://gretl.sourceforge.net/. Accessed on Apr. 13, 2015.

[2] BLIZZARD ENTERTAINMENT, INC. Diablo III. http://us.battle.net/d3/. Accessed on
Apr. 13, 2015.

[3] BLIZZARD ENTERTAINMENT, INC. Starcraft II Game Guide: Terran Units. http://us.

battle.net/sc2/en/game/unit/#terran. Accessed on Apr. 13, 2015.

[4] SHERLOCK HORSE. I guarantee it. http://9gag.com/gag/a8b5GEY. Accessed on Apr. 13,
2015.

http://gretl.sourceforge.net/
http://us.battle.net/d3/
http://us.battle.net/sc2/en/game/unit/#terran
http://us.battle.net/sc2/en/game/unit/#terran
http://9gag.com/gag/a8b5GEY

